产品线频道   >
机器人| PLC| 低压变频器| DCS| 人机界面| 现场总线| 运动控制| 高压变频器| 电机| PAC| 现场仪表| PC-BASED| 机械传动| 传感器

自主研发的基于TDC的控制系统在热连轧工程中的应用(2)


更多

三、  控制系统功能和特点

本轧线L2过程控制级的核心内容在于各种轧钢数学模型包括粗轧模型、精轧模型、板形模型、CTC模型和自学习模型等。主要功能包括:板坯初始数据及轧制计划管理、加热炉数据跟踪、轧制节奏计算、设定计算、模拟轧钢和轧辊数据及生产数据管理和历史数据管理,还可以生成班报、日报、工程记录和生产报告(包含质量分类报告) 等各种类型的报表。

中间件(Middle Ware)是过程控制系统的核心支撑软件,是L2级应用软件的开发平台和运行环境。其主要作用是屏蔽硬件平台和操作系统的差异性以及底层操作系统的复杂性,使应用程序开发人员面对一个简单而统一的开发环境,降低过程自动化应用软件开发和维护的复杂性。主要功能模块包括:实时数据文件管理(RDFM)、进程间通讯管理(IPC)、外部通讯管理(HubWare)、日志报警管理(Logger)、数据库连接管理(DBLinker)HMI变量管理(TagCenter)和进程管理(TaskWatch)等,具体系统构架如图3所示:

3 中间件系统的架构

L1基础自动化级主要功能包括:微张力控制、可逆轧制控制、热卷箱控制、飞剪控制、精轧速度控制、液压活套高度及张力控制、液压HAPC控制、精轧液压HAGC控制、板型控制ASC、终轧温度控制、卷取温度控制(CTC)、卷取速度张力控制、液压助卷辊自动踏步控制(AJC)等。众所周知,热连轧系统的复杂性和高速性主要体现在精轧区和卷取区的控制上。仅精轧区六个机架就集中了六十多个高速闭环控制回路,而且还有大量的解耦计算,同时还要实现前馈、反馈和各种补偿控制算法。这都需要功能强大的处理器的支持。而西门子TDC控制器正好可以满足这种需求。

TDC的CPU采用64位RISC技术设计,可严格保证100微秒的最短采样周期,运算功能极其强大,其PI调节器的计算时间大约为1~3微秒,可以满足热连轧“高速控制”的要求。同时TDC的CPU具有5个循环时钟周期,可以根据控制任务性质的不同将它们分配在不同的循环周期内。对于快速回路如HAPC、HAJC等控制功能放在T1周期内,对于HAGC等控制策略和各种补偿及解耦计算可以放在T2和T3周期内,而对通讯接口的处理可以放在T4周期内。如此一来不仅保证了对精轧液压压下、卷取机助卷辊液压缸部件2~4ms的快速闭环控制,还有效的减轻了CPU的负荷率。分布式TDC控制系统站点间通过GDM交换数据,与区域其它控制器和画面系统使用快速以太网通讯,与远程I/O和传动通过DP网通讯。编程人员通过MPI网或DUST1协议对分布式系统中各个TDC的程序进行调试和维护。这样的设计取得了很好的控制效果。图4为现场实测控制效果曲线,可以看出3mm的带钢厚度偏差在30μm内的达到96.53%。

4 实测曲线

四、  结束语

莱钢1500热连轧控制系统自2005年6月底试轧成功,用不到一个月的时间实现了日达产,三个月后实现了月达产。至今一年多的正常生产表明,该套自主设计和集成的控制系统能满足热连轧生产的各项要求,达到国内外先进水平,减少工程投资。该项目实现了全自动轧钢,加快了生产节奏,提高了产品质量和产量,降低了职工的劳动强度。从2005年7月到2006年2月,生产合格钢材100万吨。创造利润3个亿以上。仅2006年3~6月生产68万吨,创造利润5.5个亿。综合成材率达到97.3%;系统的全自动运行率保持在98%以上;HAGC投入率达95%以上;8mm以上厚度带钢AJC投入率达100%;厚度控制精度在± 50μm以内达97.6%。此控制系统在莱钢获得成功应用后已被推广应用到其它热连轧项目中。 

【文章来自米尔自动化网http://www.mirautomation.com/html/news/2009-05-12/nu0000000762.shtml
本文标签: 西门子   控制系统   热连轧  
 三菱电机

热门内容:
工业机器人 S7-200 S7-300 PLC编程入门 自动化产品 DCS控制系统 变频电机 工控机 可编程自动化控制器 温度传感器 HMI