产品线频道   >
机器人| PLC| 低压变频器| DCS| 人机界面| 现场总线| 运动控制| 高压变频器| 电机| PAC| 现场仪表| PC-BASED| 机械传动| 传感器

利德华福高压变频器在600MW机组增压风机上应用

前言

     为保护环境,减少二氧化硫排放量,国家环保部门对电厂烟气排放指标的考核和监督越来越严格,一些电厂也正在逐步进行大规模的脱硫系统改造或新建工程,其中增压风机是烟气脱硫装置中最主要的辅机之一,是脱硫装置能否安全和经济运行的关键设备,对增压风机进行变频改造可以提高风机的运行效率,提高稳定性,进而保证脱硫系统的运行可靠性,同时还能取得良好的节能效果,达到节能降耗目的。     

一、 企业概况

     扬州第二发电有限公司是江苏省特大型火力发电企业, 目前共有4台600MW燃煤发电机组。一期1#2#机组采用亚临界燃煤发电机组, 二期3#4#机组采用超临界燃煤发电机组, 机组安装的脱硫设施采用的是石灰石—石膏湿法脱硫工艺,即采用石灰石经吸收塔吸收二氧化硫,通过化学反应产出石膏。

     工艺流程图

       锅炉烟气经电除尘器除尘后,通过增压风机、进入吸收塔, 在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏,并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。在吸收塔出口,烟气一般被冷却到46~55℃左右,且为水蒸气所饱和。通过加热器将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。最后,洁净的烟气通过烟道进入烟囱排向大气。

二、 系统改造方案可行性

     1 风机负载调速节能原理

     风机的工作特性图如下:
 
 
 
 
     曲线①为风机按转速N1工作时的特性曲线,曲线②为风机按转速N2工作时的特性曲线,③④为风道阻力曲线。

     在第一种负载工况下,风机工作在A点,风量为Q1,风压为H1。如果风机仍然按N1速度定速运行,用挡板将风量调节为Q2时,风压将上升到H3,风机工作点移到B点。由于挡板的截流作用,风道阻力曲线由③变为④。

     在A、B两点,风机功率分别为PA=H1×Q1,PB=H3×Q2,虽然Q2<Q1,但H3>H1,实际减小的功率有限。

     如果不采用挡板调节,这时风路阻力特性保持曲线曲线③不变,改用调节风机速度来减小风量,风机改按速度N2运行,工作特性为曲线②,风机工作在C点,风量仍然为Q2,但压力为H2。

     相比B、C两点,风机减少的轴功率为:&Delta;P=PB- PC=(H3 –H2)×Q2

     在风道阻力特性不变的情况下,风机的风量Q、压力H、轴功率P和转速N之间满足如下关系(相似定理):

     Q∝N,H∝N2,P∝N3

所以有:



就是说,通过调速方式改变风机风量,风量下降一半时,风机轴功率将下降87.5%。

2 系统旁路柜控制方式



     基本原理:它是由3组高压开关柜QF1、QF2和QF3组成。要求开关柜QF2和QF3不能同时闭合。变频运行时,开关柜QF1和QF2闭合,开关柜QF3断开;工频运行时,开关柜QF3闭合,开关柜QF1和QF2断开。

     另外还保留了电机差动保护功能,采取重新更换电机中性点CT,将其控制信号接入QF2开关柜内综保装置,参与差动保护,完善电机保护功能。

三、节能数据分析:

     1 现场技术数据:

     设备参数

增压风机
成都电力机械厂
型号
AN35e6(+KSE)
流量(m3/s)
466.6
转速(r/min)
585
功率(kW)
2785
电动机
湘潭电机厂
型号
YKK900-10
电动机功率Pdn(kW)
2800
电动机转速n0(r/min)
596
电动机电压U0(KV)
10
电动机电流I0(A)
200
功率因数
0.85


     2工频/变频状态下的年耗电量计算

负荷600MW
100%
90%
80%
70%
60%
工作时间(小时)
1000
1000
1000
2500
2000
工频单位耗电(KW)
2061.08
1663.586
1516.366
1442.756
1447.1726
变频单位耗电(KW)
1646.0928
615.2064
532.0704
498.816
467.22432
每年节约分项(元)
103746.80
262094.90
246073.90
589962.50
489974.14
每年每台总共节约成本(元)
1691852.24
每年节约耗电(KW)
6767408.96
不同负荷下的节电率
20%
63%
64%
65%
68%


四、设备冷却方式

    
为了提高高压大功率变频器的应用稳定性,解决好高压变频器环境散热问题,根据现场实际情况采用密闭式空调冷却,其结构图如下:


 
     冷却设备主机安装于变频器功率柜顶部,该装置配备两台制冷压缩机。与现场接口简单,提供两路380V交流电源即可,操作方便,维护量少,保护功能完善. 正常运行时,每段电源各带一台压缩机;当单段电源故障时,另外一侧工作电源带两台压缩机运行。两台压缩机设备停运时,可以通过风道回路设置的风门实现变频器功率柜自身冷却,减少冷却装置故障对变频器运行的影响。完整的冷却系统解决方案,有效减低了辅助系统的故障率,保证设备安全运行.

五、结论

     采用变频调速后,系统实现软启动,电机启动电流远远小于额定电流,启动时间相应延长,对电网无大的冲击,减轻了起动机械转矩对电机机械损伤,降低噪音,降低了震动系数,有效的延长了电机的使用寿命,减少了检修维护开支,节约大量维护费用,降低了厂用电率,提高了供电率.

     总的来看,增压风机进行变频改造是可行的,它可以提高风机的运行稳定性,进而保证了机组脱硫系统的运行可靠性,同时还能取得良好的节能效果。
分享到
【文章来自米尔自动化网http://www.mirautomation.com/pages/2011-03/s34304.shtml
本文标签: 二氧化硫   环保   电厂烟气排放指标   增压风机  
 三菱电机

热门内容:
工业机器人 S7-200 S7-300 PLC编程入门 自动化产品 DCS控制系统 变频电机 工控机 可编程自动化控制器 温度传感器 HMI