2、液耦长时间工作时会引起液体温度升高,熔化金合塞,还会引起漏液,增大维护工作量,污染环境;
3、采用液耦时皮带机的加载时间较短,容易引起皮带张力变化,因此对皮带带强度要求较高;
4、一般的皮带机都是长距离大运量,通常都是多电机驱动,采用液耦驱动很难解决多电机驱动时的功率平衡问题。
采用高压变频器对皮带机进行驱动的优势如下:
1、真正实现皮带机软启动。通过电机慢速启动带动皮带机缓慢启动,将胶带内部贮存的能量缓慢释放,可将输送机启停时产生的冲击减至最小,几乎对胶带不造成损害;
2、降低胶带带强。由于变频器启动时间可以在1~3600s内调整,皮带机启动时间通常在60~200s内根据现场情况设定。启动时间延长大大降低对带强的要求,减少设备初期投资。实际应用中,由于降低了启动冲击,机械系统的损耗也随之降低,尤其托辊及滚筒寿命大大延长;
3、实现皮带机多电机驱动时的转矩平衡。应用变频器对皮带机驱动时可以采用一拖一控制,多电机驱动时采用主从或协调柜控制方式,实现转矩平衡;
4、验带功能。低速验带功能是皮带机检修的要求。变频调速系统为无极调速的交流传动系统,在空载验带状态下可调整0~100%额定带速范围内的任意带速;
5、平稳的重载启动。变频器低频运转可输出2.2倍额定力矩,适于重载启动;
6、自动调速。变频器配合煤流传感器可以根据负载轻重自动调节胶带速度,节电的同时还减少了胶带的磨损;
7、节能。对应于煤矿的特殊生产条件,有时,煤的产量是极不均匀的,当然皮带机系统的运煤量也是不均匀的,在负载轻或无负载时,皮带机系统的高速运行对机械传动系统的磨损浪费较为严重,同时电能消耗也较低速运行大的多,但因生产的需要皮带机系统又不能随时停车,采用单独的控制系统对前级运输系统的载荷、本机运输系统的载荷进行分别测量,这样可控制变频器降速或提前升速。对于载荷不均的皮带机系统,可节约电能、降低皮带的磨损。
其次介绍一下皮带机采用变频系统控制,可以选择的不同控制方案。
皮带机由多台电机拖动时,由于各电机输出是通过皮带耦合在一起的,因此需要考虑协调控制问题。根据电机学原理,对于滑差0.01的电机,变频器输出频率相差0.2%时,将会导致约20%的输出转矩不平衡,在轻载时,变频器少量的输出频率差别,还会导致输出频率较低的变频器进入能量回馈状态,进而发生过压故障。因此一般需要采取有效的控制手段,平衡各电机出力。
在实际应用中,根据现场配置和要求不同,可选择如下3种驱动方案:
1、对于功率较小(一般单机额定电流在50A以下),电机数量较少(一般不超过3台),低成本应用场合,可以选择一拖多并联运行方案;
2、对于需要主动进行各电机出力均衡控制的场合,如果电机数量较少,距离较近,系统构成较简单,可采用主-从控制方案;
3、如果电机数量较多,或者相距较远、系统较复杂,可采用统一协调控制方案。
一拖多运行方式。多台电机由一台变频器拖动,可以保证多台的转速相同,电机根据其滑差特性分配负载转矩,需要各电机参数较为一致。此种方式下,由于电机直接并联运行,因此变频器无法控制各电机的出力平衡,各电机出力的平衡性由电机特性差异、滚筒直径差异、皮带包络角差异等因素决定。该方案系统成本最低,但变频器故障将导致皮带系统无法运行,因而不太适用于考虑电机冗余配置的场合。以双机运行为例的主回路结构图如图4所示,图中工频旁路为可选配置。
图4一拖二并联运行方案系统结构
对于需要进行各电机出力均衡主动控制的场合,如果电机数量较少(一般不超过6台),各电机距离较近(一般不超过50米),系统构成较简单,可以采用多机主-从一拖一控制运行方案。此种方式支持N+1冗余系统配置,即任意1台变频器或者电机发生故障时,不破坏主-从控制架构,在皮带系统允许的情况下,可以依靠剩余的变频器和电机继续驱动皮带运行。每台电机由一台变频器拖动,运行在矢量控制方式下。其中一台变频器作为主机,接收来自用户上位控制系统的信号,负责皮带系统的速度控制和整体逻辑控制;其余的变频器作为从机,接收来自主变频器的转矩给定信号和逻辑控制信号,并向主变频器报告自身的状态。由于各变频器执行相同的转矩给定信号,因此各电机的输出转矩相同。 该方案的特点是,系统配置简单、可靠,能够满足N+1的电机配置要求,能够完成主动的转矩协调控制,使各电机出力相同。此系统架构如图5所示:
图5主从一拖一控制方案系统结构
台达DOP-W系列提供10.4”/12”/15&rdqu…
JetNet 3005G · 5口全千兆RJ-45交换机 …
显示规格 一般规格 环境规格 结构规格 外形…
功能规格 …
功能规格 …
西门子SIMATIC S7-400PLC的主要特色为:极高的处理…