处理大数据,指的是要能够共享、集成、存储和搜索来自众多源头的庞大数据。而就供应链而言,这意味着要能够接受来自第三方系统的数据,并加快反馈速度。其整体影响是增强协同性、加快决策制定和提高透明度,这对所有相关人员都有帮助。
总结
大数据可以分为两个独立的部分,分别针对其规模和信息的有效利用。第一部分针对的是对如今所生成、传输和存储的海量信息进行简单处理所带来的挑战。当前,数据量呈爆炸式增长,而随着M2M(机器对机器的通讯)的应用,此趋势仍将持续下去。但是,如若能够解决这些挑战,将可以打开崭新的局面,这便是大数据的第二部分所对应的问题。
通过挖掘这些新数据集的潜力,并结合来源广泛的信息,就可能获得全新的洞见。如此,企业可以开发全新的流程,并与产品全生命周期的各个方面直接关联。与之集成的还有报告和分析功能,为流程提供反馈,从而创建一个良性的强化循环。
以Siemens PLM Software为骨干,并以Teamcenter这样的技术平台为核心,企业便可以设想出整个集成实施情景。在此情景下,由于客户、用户、设计和测试提出的所有需求和反馈都能被反馈至开发环节,因此实现安全管理的大数据便成为变更和竞争优势的催化剂。由设计部门向仿真部门提出仿真要求,仿真部门将结果反馈给设计部门,然后再传至供应链、制造、包装和物流部门,从中我们看到了一个基于大数据的良性循环的诞生。
领先制造企业的管理人员正利用大数据,以近乎实时的方式实现经营优化。虽然目前只有少数企业可利用大数据来建立竞争优势,但我们预期在未来几年,大数据应用将成为制造业的进入门槛。
台达DOP-W系列提供10.4”/12”/15&rdqu…
JetNet 3005G · 5口全千兆RJ-45交换机 …
显示规格 一般规格 环境规格 结构规格 外形…
功能规格 …
功能规格 …
西门子SIMATIC S7-400PLC的主要特色为:极高的处理…