产品线频道   >
机器人| PLC| 低压变频器| DCS| 人机界面| 现场总线| 运动控制| 高压变频器| 电机| PAC| 现场仪表| PC-BASED| 机械传动| 传感器

基于凌华科技PCI-9846和LabVIEW数据采集分析系统(2)


更多

LabVIEW含有种类丰富的函数库,在很大程度上缩短了开发周期,而且开发的应用程序易于维护和扩展功能。应用LabVIEW开发环境进行数据采集与分析应用软件的开发,将数据采集卡PCI9846和灵活方便的应用软件开发平台LabVIEW结合起来,可以降低开发成本,又可以缩短开发周期,使开发变得方便高效。

1.3 LabVIEW控制采集卡

PCI9846提供了LabVIEW驱动,安装驱动时会自动查找LabVIEW目录,然后将必要的文件复制到相应的文件夹中去,如果系统中没有安装LabVIEW或者其版本低于6.0,驱动安装程序会弹出一个对话框提示更新LabVIEW的版本。LabVIEW驱动程序安装完成后,在就可以在LabVIEW中使用PCI9846来进行数据采集了[4]。

LabVIEW驱动安装完成后,在函数选板会增加如图1所示相应的项,在本文中直接使用其中的"DAQPilotExpressVI",根据提示完成相应设置后即可实现数据采集(图2)。

 LABVIEW函数选板新增项

 图2 配置向导

二、 信号分析

数据采集完成后,必须对数据进行分析,以从中提取相应信息。本系统数据分析主要集中在频域。信号分析处理是LabVIEW的一个重要组成部分,它提供了大量的专业性很强的信号分析处理函数,对于信号的常见分析直接利用LabVIEW现成函数即可满足要求,但用来对信号进行较复杂处理时需自行编写函数。

谐波信号离散傅立叶变换和频谱分析的频率、幅值和相位都可能存在较大误差,从理论上分析单频率谐波信号加矩形窗时离散频谱分析的幅值最大误差可达36.4%;即使加其它窗时,也不能完全消除此误差,加Hanning窗并只进行幅值恢复时的最大幅值误差仍高达15.3%;不论加何种窗函数,离散频谱分析的相位最大误差高达±90度,频率最大误差为±0.5个频率分辨率。因此,频谱分析的结果在许多领域只能定性而不能精确地定量分析和解决问题,大大限制了该技术的工程应用,特别是在机械振动和故障诊断中的应用受到极大限制。所以要对离散频谱分析得到的各频率成分参数进行校正,以得到较为精确的频率、幅值和相位估计值。所以需要研究离散频谱的校正理论和技术以消除或大幅度减小这个误差,提高分析精度。对于单频率成分或间隔较远的多频率成分的离散频谱进行校正[6]。

目前国内外有四种对幅值谱或功率谱进行校正的方法[6]:比值校正法(内插法),能量重心校正法,FFT+FT连续细化分析傅立叶变换法和相位差法;相位差法又分为时移法、改变窗长法和综合法。从理论上分析,在信号不含噪声的情况下比值法和相位差法是精确的校正方法,而能量重心法和FFT+FT谱连续细化分析傅立叶变换法是精度很高的近似方法。

随着离散频谱校正技术的发展和不断完善,越来越广泛地被应用于分析各种实际问题和各类动态信号分析系统中。离散频谱校正理论已在或将在下列领域得到广泛的应用:

(1) 各类动态信号分析仪及计算机辅助测试系统;

(2) 旋转机械振动信号,具有滑动轴承的旋转机械,工作转速大多很稳定,且需要相位作为分析参数,此时采用比值校正法最佳;

(3) 发动机等扭振信号,对于稳态扭振信号,只需要精确求出各谐次幅值,由于三点卷积校正法不受转速有小波动的影响,是稳态扭振信号的最佳选择;

(4) 仪器仪表领域中的应用,已经应用到涡街流量计和电力系统电参量等需要精密频率测量计算出物理量的仪器仪表中;

(5) 电力系统谐波分析;

(6) 激光多普勒测速中提高精度;

(7) 高精度的频率与幅值校准系统,目前国内在精确标定动态信号的频率和幅值的仪器方面还是空白,利用比值校正法配合高精度A/D板可以研制出标定仪器,填补这方面的空白;

(8) 精密分析各类振动信号频谱;

(9) 循环平稳解调分析,采用离散频谱来校正解调后的调制频率和幅值,大幅度提高分析精度,能够更准确的提取故障信息;

(10) 雷达精密测距和电子对抗的军事领域。

【文章来自米尔自动化网http://www.mirautomation.com/pages/2014-12/pa46599.shtml
本文标签: 凌华科技   数据采集卡   PCI9846   汽车NVH  
 三菱电机

热门内容:
工业机器人 S7-200 S7-300 PLC编程入门 自动化产品 DCS控制系统 变频电机 工控机 可编程自动化控制器 温度传感器 HMI